SymPy

Online

Installation

# 記得先切到 virtualenv 裡面
$ pip install sympy

Example

Example 1

# var(names, **args)
#     Create symbols and inject them into the global namespace.
#
#     This calls :func:`symbols` with the same arguments and puts the results
#     into the *global* namespace. It's recommended not to use :func:`var` in
#     library code, where :func:`symbols` has to be used::

>>> from sympy import var
>>> var('x y')
(x, y)
>>> z = x + y
>>> z
x + y
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> z = x + y
>>> z
x + y
>>> z - x
y
>>> z + x
2⋅x + y
>>> z ** 2
       2
(x + y)
>>> (z ** 2).expand()
 2            2
x  + 2⋅x⋅y + y
# 把其他值代入原本的方程式
>>> z
x + y
>>> z.subs(x, 3)
y + 3
>>> z.subs({x: 3, y: 4})
7
>>> z.subs([(x, 3), (y, 4)])
7
# symbol 名稱跟變數名稱可以不同
>>> m, n = symbols('n m')
>>> m
n
>>> n
m
>>> from sympy import init_printing
>>> from sympy import Integral
>>> init_printing()
>>> a = Integral(z, x)
>>> a

⎮ (x + y) dx

>>> from sympy import pi
>>> pi
π
# .evalf(100) : 計算 formula 實際的值,精準度指定為 100 位 (包含整數部份)
>>> pi.evalf(100)
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068
# .evalf(100, subs=...) : 計算 formula 實際的值 (代入其他值),精準度為 100 位 (包含整數部份)
>>> z.evalf(100, subs={x: pi, y: 1})
4.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068

Example 2 - solve

>>> from sympy import Symbol
>>> from sympy.solvers import solve
>>> x = Symbol('x')
>>> y = x**2 - 1
# 解出方程式 (x**2 - 1 = 0) 裡的 x
>>> solve(y, x)
[-1, 1]

Example 3 - plot (繪圖)

from sympy import var
from sympy.plotting import plot

fac = sympy.factorial
sin = sympy.sin
cos = sympy.cos

var('x')

error = abs(sin(x) - (x-x**3/fac(3)+x**5/fac(5)-x**7/fac(7)+x**9/fac(9)-x**11/fac(11)+x**13/fac(13)))

plot(error, (x, 0, sympy.pi))

error = abs(cos(x) - (1-x**2/fac(2)+x**4/fac(4)-x**6/fac(6)+x**8/fac(8)-x**10/fac(10)+x**12/fac(12)))
plot(error, (x, 0, sympy.pi))

Example 4 - lambdify/ufuncify/… (轉成 lambda function)

在 SymPy 的 Numeric Computation 裡有列出了許多計算實際值的方式, 目前有以下幾種作法:

Tool

Qualities

Dependencies

subs/evalf

Simple

None

lambdify

Scalar functions

math

lambdify-numpy

Vector functions

numpy

ufuncify

Complex vector expressions

f2py, Cython

Theano

Many outputs, CSE, GPUs

Theano

from sympy import var
from sympy.utilities.lambdify import lambdify

var('x')

y = x**x
f = lambdify(x, y)

print(f(3))     # 27
# Generates a binary function that supports broadcasting on numpy arrays

from sympy import var
from sympy.utilities.autowrap import ufuncify

var('x')

y = x**x
f = ufuncify(x, y)  # function 'f' can accept iterable parameter and return NumPy array

print(f(3))             # 27.0
print(f([1, 3, 5]))     # [  1.00000000e+00   2.70000000e+01   3.12500000e+03]

Other CAS

Reference